104.5 - Spectrometry, Single Element Standard Solutions

These SRMs are intended as standard solutions for calibrating instruments used in atomic spectrometry, including atomic absorption spectrophotometry, inductively coupled plasma optical emission spectrometry, and inductively coupled plasma mass spectrometry. They can also be used in conjunction with any other analytical technique or procedure where standard solutions are required. Each SRM is a single element solution of 50 mL. with a nominal concentration of 10 mg/g, except where indicated. Each unit is provided in either a single high density polyethylene bottle or in 5 x 10 mL brostilicate glass ampoules. NOTE: The certified values for SRM standard solution lots produced after March 1997 are stated in mass units, mg/g, rather than mg/mL. For the convenience of the user, each certificate provides instructions for preparing SRM dilutions by volume as well as by mass.

Commercial Producers of Elemental Standard Solutions; Instructions and a spreadsheet have been designed as an aid for establishing traceability of a batch of an elemental solution to the corresponding elemental spectrometric solution from the NIST SRM 3100 Series. Spreadsheet with ICP-OES example data is also included. When all required input fields are filled, the spreadsheet will calculate the traceable mass fraction and uncertainty of the batch elemental solution standard. The uncertainty provided by the spreadsheet assumes that the tested lot is stable. Any uncertainty due to changes over time to the lot tested, need to be quantified by the producer of the lot, and incorporated into the total uncertainty of the lot.

Instructions: http://www.cstl.nist.gov/nist830/PittCon/Version%201-12/20Traceability%20Traceabil

PLEASE NOTE: The tables are presented to facilitate comparisons among a family of materials to help customers select the best SRM for their needs. For specific values and uncertainties, the certificate is the only official source.

SRM	3101a	3102a	3103a	3104a	3105a	3106	3107	3108	3109a	3110	3111a	3112a	3113	3114	3115a	3116a	3117a	3118a	3119a	3120a
Description	Aluminum Standard Solution	Antimony Standard Solution	Arsenic Standard Solution	Barium Standard Solution	Beryllium Standard Solution	Bismuth Standard Solution	Boron Standard Solution	Cadmium Standard Solution	Calcium Standard Solution	Cerium Standard Solution	Cesium Standard Solution	Chromium Standard Solution	Cobalt Standard Solution	Copper Standard Solution	Dysprosium Standard Solution	Erbium Standard Solution	Europium Standard Solution	Gadolinium Standard Solution	Gallium Standard Solution	Germanium Standard Solution
Unit of Issue	(50 mL)	(50 mL)	(50 mL)	(50 mL)	(5x10 mL)	(5x10 mL)	(50 mL)	(50 mL)	(5 x 10 mL)	(5x10 mL)	(50 mL)	(5 x 10 mL)	(5x10 mL)	(5x10 mL)	(5x10 mL)	(5x10 mL)	(5x10 mL)	(5x10 mL)	(5 x 10 mL)	(50 mL)
Nominal Acid Concentration of Matrix	HNO ₃ 10%	HNO ₃ 10% + HF 2%	HNO ₃ 10%	HNO ₃ 10%	HNO ₃ 10%	HNO ₃ 10%	H ₂ O	HNO ₃ 10%	HNO ₃ 10%	HNO ₃ 10%	HNO ₃ 1%	HNO ₃ 10%	HNO ₃ 10%	HNO ₃ 10%	HNO ₃ 10%	HNO ₃ 10%	HNO ₃ 10%	HNO ₃ 10%	HNO ₃ 10%	HNO ₃ 10% + HF 2%

104.5 - Spectrometry, Single Element Standard Solutions

These SRMs are intended as standard solutions for calibrating instruments used in atomic spectrometry, including atomic absorption spectrophotometry, inductively coupled plasma optical emission spectrometry, and inductively coupled plasma mass spectrometry. They can also be used in conjunction with any other analytical technique or procedure where standard solutions are required. Each SRM is a single element solution of 50 mL. with a nominal concentration of 10 mg/g, except where indicated. Each unit is provided in either a single high density polyethylene bottle or in 5 x 10 mL brostilicate glass ampoules. NOTE: The certified values for SRM standard solution lots produced after March 1997 are stated in mass units, mg/g, rather than mg/mL. For the convenience of the user, each certificate provides instructions for preparing SRM dilutions by volume as well as by mass.

Commercial Producers of Elemental Standard Solutions; Instructions and a spreadsheet have been designed as an aid for establishing traceability of a batch of an elemental solution to the corresponding elemental spectrometric solution from the NIST SRM 3100 Series. Spreadsheet with ICP-OES example data is also included. When all required input fields are filled, the spreadsheet will calculate the traceable mass fraction and uncertainty of the batch elemental solution standard. The uncertainty provided by the spreadsheet assumes that the tested lot is stable. Any uncertainty due to changes over time to the lot tested, need to be quantified by the producer of the lot, and incorporated into the total uncertainty of the lot.

Instructions: http://www.estl.nist.gov/nist839/PittCon/Version%201_1%20TTcn Spreadsheet: http://www.estl.nist.gov/nist839/PittCon/Version%201_1%20TTcnex Sample data: http://www.estl.nist.gov/nist839/PittCon/Example%20Data%20

PLEASE NOTE: The tables are presented to facilitate comparisons among a family of materials to help customers select the best SRM for their needs. For specific values and uncertainties, the certificate is the only official source.

SRM	3121	3122	3123a	3124a	3126a	3127a	3128	3129a	3130a	3131a	3132	3133	3134	3135a	3136	3137	3138	3139a	3140	3141a
Description	Gold Standard Solution	Hafnium Standard Solution	Holmium Standard Solution	Indium Standard Solution	Iron Standard Solution	Lanthanum Standard Solution	Lead Standard Solution	Lithium Standard Solution	Lutetium Standard Solution	Magnesium Standard Solution	Manganese Standard Solution	Mercury Standard Solution	Molybdenum Standard Solution	Neodymium Standard Solution	Nickel Standard Solution	Niobium Standard Solution	Palladium Standard Solution	Phosphorus Standard Solution	Platinum Standard Solution	Potassium Standard Solution
Unit of Issue	(5 x 10 mL)	(50 mL)	(5x10 mL)	(5x10 mL)	(50 mL)	(5 x 10 mL)	(5 x 10 mL)	(5x10 mL)	(5 x 10 mL)	(50 mL)	(5 x 10 mL)	(5 x 10 mL)	(5 x 10 mL)	(5x10 mL)	(5x10 mL)	(50 mL)	(5x10 mL)	(5x10 mL)	(5x10 mL)	(50 mL)
Nominal Acid Concentration of Matrix	HCI 10%	HNO ₃ 10% + HF 2%	HNO3 10%	HNO3 10%	HNO3 10%	HNO ₃ 10%	HNO ₃	HNO ₃ 1%	HNO ₃ 10%	HNO ₃ 10%	HNO ₃ 10%	HNO ₃ 10%	HCI 10%	HNO ₃ 10%	HNO3 10%	HNO ₃ 10% + HF 2%	HCI 10%	HNO ₃ 0.8%	HCI 10%	HNO ₃ 1%

104.5 - Spectrometry, Single Element Standard Solutions

These SRMs are intended as standard solutions for calibrating instruments used in atomic spectrometry, including atomic absorption spectrophotometry, inductively coupled plasma optical emission spectrometry, and inductively coupled plasma mass spectrometry. They can also be used in conjunction with any other analytical technique or procedure where standard solutions are required. Each SRM is a single element solution of 50 mL. with a nominal concentration of 10 mg/g, except where indicated. Each unit is provided in either a single high density polyethylene bottle or in 5 x 10 mL brostilicate glass ampoules. NOTE: The certified values for SRM standard solution lots produced after March 1997 are stated in mass units, mg/g, rather than mg/mL. For the convenience of the user, each certificate provides instructions for preparing SRM dilutions by volume as well as by mass.

Commercial Producers of Elemental Standard Solutions; Instructions and a spreadsheet have been designed as an aid for establishing traceability of a batch of an elemental solution to the corresponding elemental spectrometric solution from the NIST SRM 3100 Series. Spreadsheet with ICP-OES example data is also included. When all required input fields are filled, the spreadsheet will calculate the traceable mass fraction and uncertainty of the batch elemental solution standard. The uncertainty provided by the spreadsheet assumes that the tested lot is stable. Any uncertainty due to changes over time to the lot tested, need to be quantified by the producer of the lot, and incorporated into the total uncertainty of the lot.

Instructions: http://www.estl.nist.gov/nist839/PittCon/Version%201_1%20TTcn Spreadsheet: http://www.estl.nist.gov/nist839/PittCon/Version%201_1%20TTcnex Sample data: http://www.estl.nist.gov/nist839/PittCon/Example%20Data%20

PLEASE NOTE: The tables are presented to facilitate comparisons among a family of materials to help customers select the best SRM for their needs. For specific values and uncertainties, the certificate is the only official source.

SRM Description Unit of Issue	3142a Praseodymium Standard Solution (5x10 mL)	3143 Rhenium Standard Solution (50 mL)	3144 Rhodium Standard Solution (5x10 mL)	3145a Rubidium Standard Solution (5x10 mL)	3147a Samarium Standard Solution (5x10 mL)	3148a Scandium Standard Solution (5x10 mL)	3149 Selenium Standard Solution (5 X 10 mL)	3150 Silicon Standard Solution (50 mL)	3151 Silver Standard Solution (5 x 10 mL)	3152a Sodium Standard Solution (50 mL)	3153a Strontium Standard Solution (5 x 10 mL)	3154 Sulfur Standard Solution (5 x 10 mL)	3155 Tantalum Standard Solution (50 mL)	3156 Tellurium Standard Solution (5 x 10 mL)	3157a Terbium Standard Solution (5x10 ml)	3158 Thallium Standard Solution (5 x 10 mL)	3159 Thorium Standard Solution (50 mL)	3160a Thulium Standard Solution (5 x 10 mL)	3161a Tin Standard Solution (50 mL)	3162a Titanium Standard Solution (50 mL)	
Nominal Acid Concentration of Matrix	HNO ₃ 10%	HNO3	HCI 10%	HNO ₃ 1%	HNO3 10%	HNO ₃ 10%	HNO ₃ 10%	H ₂ O			HNO ₃ 10%	H ₂ SO ₄	HNO ₃ 10% + HF	HCI 10%	HNO ₃	HNO ₃ 10%	HNO ₃	HNO ₃ 10%	HNO3 5% + HF	HNO3 10% + HF 2%	